Symbiotic Bright Solitary Wave Solutions of Coupled Nonlinear Schrödinger Equations
نویسندگان
چکیده
Conventionally, bright solitary wave solutions can be obtained in self-focusing nonlinear Schrödinger equations with attractive self-interaction. However, when selfinteraction becomes repulsive, it seems impossible to have bright solitary wave solution. Here we show that there exists symbiotic bright solitary wave solution of coupled nonlinear Schrödinger equations with repulsive self-interaction but strongly attractive interspecies interaction. For such coupled nonlinear Schrödinger equations in two and three dimensional domains, we prove the existence of least energy solutions and study the location and configuration of symbiotic bright solitons. We use Nehari’s manifold to construct least energy solutions and derive their asymptotic behaviors by some techniques of singular perturbation problems.
منابع مشابه
On the Spectral Stability of Solitary Wave Solutions of the Vector Nonlinear Schrödinger Equation
We consider a system of coupled cubic nonlinear Schrödinger (NLS) equations i ∂ψj ∂t = − ∂ψj ∂x2 + ψj n ∑ k=1 αjk|ψk| j = 1, 2, . . . , n, where the interaction coefficients αjk are real. The spectral stability of solitary wave solutions (both bright and dark) is examined both analytically and numerically. Our results build on preceding work by Nguyen et al. and others. Specifically, we present...
متن کاملCollisional Dynamics of Solitons in the Coupled PT Symmetric Nonlocal Nonlinear Schrödinger Equations
We investigate the focussing coupled PT symmetric nonlocal nonlinear Schrödinger equation employing Darboux transformation approach. We find a family of exact solutions including pairs of Bright-Bright, Dark-Dark and Bright-Dark solitons in addition to solitary waves. We show that one can convert bright bound state onto a dark bound state in a two soliton solution by selectively finetuning the ...
متن کاملSolitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation
The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.
متن کاملComplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملNew study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کامل